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We abandon, as a futile endeavor, the computation of a meaningful initial orbital element set based on angles-
only data. Rather, for the ballistic missile initial orbit determination problem in particular, the concept of
"launch folders" is extended. This allows one to decouple the observational data from the initial orbit deter-
mination problem per se. The observational data is only used to select among the possible orbital element sets in
the group of folders. Monte Carlo simulations using up to 7200 orbital element sets are described herein. The
results are compared to the true orbital element set and the one a good radar would have been able to produce if
collocated with the optical sensor. The simplest version of the new method routinely outperforms the radar in-
itial orbital element set by a factor of two in future miss distance. In addition, not only can one produce a dif-
ferentially corrected orbital element set via this approach—after only two measurements of direction—but one
can also calculate an updated, meaningful, six-dimensional covariance array for it. This technique represents a
significant advance in initial orbit determination for this problem, and the concept can easily be extended to
minor planets and artificial satellites.

Nomenclature
a = semimajor axis of the orbit in kilometers
e = eccentricity of the orbit
£ = topocentric direction cosine vector of the missile
Nj = number of impact boxes
NL = number of launch boxes
P = period of revolution of the orbit in seconds
R = topocentric distance of the missile in kilometers
R = topocentric location of the missile in kilometers
T = time of last perigee passage of the orbit in seconds
t = time in seconds
tF = time of future location prediction in seconds
tL = time of launch in seconds
ti,t2 = times of observation in seconds
dt =tF-t29 prediction time into the future in seconds
At = t2 —1{, time delay between observations in seconds
fi = longitude of the ascending node of the orbit in radians

Introduction

THE classical problem of angles-only initial orbit deter-
mination has undergone considerable expansion since the

advent of the space age. Rockets, radar, ballistic missiles, and
modern low-light-level cameras attached to agile, computer-
controlled telescopes have changed the nature of observing
and the nature of observables. In addition, not only is the
problem of initial orbit determination with three pairs of
angles only still without a statisfactory solution, the other data
sets that have come into vogue (because of the improved in-
strumentation) also have their own mathematical complexities
and sensitivities to real observational errors. Indeed, it was
only in 19851 that the two-location, two-time (i.e., radar) in-
itial orbit determination problem was solved in an analytically
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straightforward and numerically robust fashion. Also, the
time scales of practical initial orbit determination problems
have shortened considerably from months in the case of minor
planets (the original area of application) to hours for deep-
space artificial satellites to minutes for ballistic missiles. Con-
comitantly, the urgency for a good orbital element set and the
consequences of not having one have increased. The target-
rich environment postulated for the Strategic Defense In-
itiative (SDI) scenario only complicates an already difficult, if
not intractable, problem.

For those and other reasons we have abandoned trying to
compute an initial orbital element set in any of the conven-
tional ways. We have defined2 preliminary initial orbit deter-
mination as the problem of calculating an orbital element set,
ab initio, but with an incomplete set of kinematic measure-
ments. The shortfall from six independent measurements of
the kinematic state is made up by using "other information."
This might be a known launch point for a ballistic missile
(which we have explored in depth2), a minimum energy conic
for the transfer orbit of a deep-space payload, and so on. This
paper discusses the ballistic missile problem in the context of
the SDI scenario and investigates the extreme extrapolation of
a technique used by deep-space radar operators to search for
the launches of deep-space artificial satellites.

Because it is of great value to be able to observe the ascent
trajectory of deep-space artificial satellite launches and their
evolution into the transfer orbit, the operators of deep-space
tracking radars have developed search strategies designed to
deal with the search and acquisition problem for this phase of
a deep-space launch. A radar with a wide beam might be used
to mount a horizon fence that the upper-stage assembly must
cross. A radar with a narrow beam needs a different plan of
action. A usually successful procedure for the latter instru-
ments is to use a set of nominal (i.e., historical) "launch fold-
ers." Each folder contains a typical zeroth revolution orbital
element set for a particular satellite payload from a specific
launch site. Knowing an approximate time of liftoff from a
definite location, coupled with a guess as to the nature of the
payload, determines which launch folder to use to direct the
radar and where along the orbit to commence the search. The
central idea of this paper is to significantly increase the
number of launch folders and then use statistical methods to
select the one orbital element set that best fits the available
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observational data, hence the term statistical initial orbit de-
termination (SIOD).

SIOD Concept in the SDI Scenario
Imagine dividing the Eurasian landmass of the U.S.S.R.

into a moderate number (say 25) of roughly equal areas. In-
cluded would be the coastal waters too so that each launch box
might be 20 deg wide in longitude and 10 deg high in latitude.
Also imagine performing a similar subdivision of the conter-
minous U.S.A., Alaska, Hawaii, and their coastal waters.
This time one might use 18 roughly equal areas 10 deg in longi-
tude by 10 deg in latitude. Uniquely label each of the NL
launch boxes and each of the Nf impact boxes. Allow every
launch box to aim at every impact box. Thus there are a total
of NLNj "nominal" launch folders. Exactly how these were
determined is described later.

The next step is to envision a situation wherein at time t = tl
a sensor observes a missile, bus, warhead, decoy, or so on in
flight. Pick from the set of NLNf possible orbital element sets
the few that best match the observational data (which alone
are insufficient to compute an orbital element set). Having
selected this first subset of trial orbital element sets, wait for
the next observation to arrive at time t-t^. When it conies,
further winnow the first subset of potential orbital element
sets to a subset consisting of just one orbital element set. This
is accomplished by looking for the best match to the observa-
tion at the second time t2. Use this final orbital element set to
further predict the motion of the body. Note that there is still
not enough knowledge to calculate an orbital element set ab
initio. (Correlation of the two observations is a different, im-
portant, and difficult issue not dealt with herein. Note that
with the method proposed this correlation can be meaning-
fully performed in the full six dimensions of orbital element
set space. This is a real advance over all other angles-only
methods.)

Some of the advantages of this idea are that before an
angles-only initial orbital element set could have been com-
puted, a complete orbital element set is at hand. Moreover,
after the selection of the optimal orbital element set from the
master file ofNLNf possibilities, there exists information (i.e.,
the same observational data used to select the optimal orbital
element set) that can be used to differentially correct it. In ad-
dition, since the process used to generate the NLNr component
master file also produces covariance arrays for each of its en-
tries, one can also update the covariance matrix for the chosen
orbital element set. Thus, this places one in the enviable posi-
tion of not only having a good orbital element set from N=2
sets of angles-only data (an impossibility in general3'7 for
N< 10) but also having already differentially corrected it with
a realistic, updated covariance array that can be used to pre-
dict six-dimensional uncertainty volumes. Only if the
postulated sensor were a radar could its observational output
believably compete with this statistical initial orbit determina-
tion scheme. Therefore, when we need a standard of compari-
son for our statistical initial orbit determination algorithm, we
will imagine that a colocated radar also made observations,
and it is the radar initial orbit determination element set that
we use. (With two observations of location at two times there
is minimally complete information to solve the initial orbit de-
termination problem for this data set. Of course it would be
impossible to independently ascertain its utility, differentially
correct it, or compute its covariance array. With a model for
the expected performance of the radar and the observational
data, a covariance array could be calculated. This is only a
formal computation and, as a consequence, is of very limited
true value.)

The production of the master file ofNLNf mean orbital ele-
ment sets can occur off line. The reason they are (from now
on) referred to as mean orbital element sets is that it is
desirable to have good estimates for the trustworthiness of
these element sets, i.e., a realistic covariance matrix. Thus, the
actual computational procedure to generate these was the fol-

lowing: 1) Pick a value of ne[l,NL] and a value of me[\JVr]. 2)
Pick a point uniformly at random within the geographic re-
gion defined by launch box number n. Do the same for impact
box number m. 3) Construct, at a fixed physical time (say Jan.
1.0, 1991), the Keplerian ballistic missile-like trajectory be-
tween these two locations allowing for the rotation of the
Earth during the flight. 4) Repeat steps 2 and 3 a total of 249
more times for this launch/impact box combination. 5) Com-
pute the mean orbital element set for this launch box/impact
box doublet and the associated error covariance matrix. By
this the reader is to understand that the average value of the
semimajor axis <a> is calculated over the 250 Monte Carlo
replications, the average value of the eccentricity <e> is simi-
larly computed, and so on. Then the average values of
(a- <a>)2, (e- <e>)2, and so forth, are calculated as well
as the average values of [(a- <a>)(e- <e>)], . . ., all for
this particular launch/impact box combination. 6) Store the
results. 7) Vary n and m until all NLNf possible combinations
have been exhausted.

Test Protocol
How should one decide if the statistical initial orbit deter-

mination process works well enough to pursue it further? One
must simulate the angles-only observation of objects in ballis-
tic missile-like trajectories with a realistic optical or infrared
sensor, go through the first stage of the elimination process at
time t = tl described previously, repeat the pseudo-observation
at time /2» select the best orbital element set from the re-
mainder using the additional observational data, and then use
the optimal mean orbital element set to predict ahead to time
t = tF. This prediction must be compared not only to the real
orbital element set used to generate the pseudo-observations
but also to the best possible competitor, an initial orbital
element set computed via the two-location, two-time method
as if the sensor were a realistic radar making observations at
the times tl and t2, too. Repeating this process hundreds of
times, with different launch/impact box combinations, dif-
ferent viewing geometries for the observer, different observa-
tional errors, and so on, one could compare the ratio of the
average miss distance for the two techniques. If the average
statistical initial orbit determination miss distance (as judged
by the underlying real orbital element set's predicted location)
is smaller than the average two-location, two-time miss dis-
tance, then this concept has promise and should be further in-
vestigated. In particular, the refinements mentioned below
should be incorporated. Given the potential monetary savings
in observing facilities, timeliness of computation, and so on,
in favor of an angles-only system, even if the ratio is just
unity, then the statistical initial orbit determination technique
should be pursued.

Some of the parameters of such a test were briefly men-
tioned. More fully they should include different observational
errors for the sensors (that is, varying the standard deviations
in the Gaussian random number generators), different time in-
tervals between the successive observations (i.e., At = t2-tl),
different prediction time spans into the future, (i.e.,
dt = tF —t2), varying the location of the observer (or more gen-
erally the orbit for the observing sensor), and different values
for NL or Nf. Except for the location of the observer, all these
quantities have been altered in the studies reported herein.

For convenience our observer is always at, or directly
above, the North Terrestrial Pole. Placing him elsewhere on
the Earth's surface or in near-Earth orbit would only compli-
cate the viewing geometry without adding anything physically
or mathematically new. These complications would only cause
an increase in computing time (because of an increased lack of
visibility) to obtain results with the same statistical certainty as
are presented later. (Once again, while we recognize the diffi-
cult problem of correlation, especially within a constellation
of orbiting sensors, that is a different problem from the one
addressed herein and one that must be dealt with before any
meaningful computation of an orbital element set can com-
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mence.) Finally, a deep-space observing platform for a radar
seems especially unrealistic because of the 1/r4 losses it would
entail.

Last, one might argue for using other than the radar, two-
location, two-time initial orbit determination method as a
comparison. A low-light-level television camera or a wide
field-of-view charge coupled device camera, used in the mode
where the target is allowed to streak across the focal plane,
provides four pieces of information per observation (i.e., posi-
tion and angular velocity). Similarly, the radar might use fre-
quency modulation techniques that allowed the determination
of the radial velocity via the mechanism of the Doppler shift.
In addition, we could expand our number of observational
sessions to three and use the classical angles-only initial orbit
determination schemes of Gauss or Laplace. In our opinion,
and based on extensive practical experience,1'3"9 none of these
competitors is a realistic one to the two-location, two-time
method. All other variants we have ever used are either numer-
ically Unstable, not robust with regard to real observational er-
rors, or analytically intractable. Moreover, it would still be
true that none of these possible competitors could differen-
tially correct the initial orbital element set nor could they inde-
pendently generate a meaningful covariance matrix. We also
already know, and the reader will soon learn* that our simplis-
tic statistical initial orbit determination scheme outperforms
the two-location, two-time method by better than a factor of
two.

Details of the Statistical Initial Orbit
Determination Process

Because we believe that we have made a substantial advance
on a heretofore intractable problem, the computational proce-
dures we have followed are described in sufficient detail for all
interested parties to understand and reproduce the results.
Moreover, because we have already thought of several major
refinements to the basic technique described herein, we need
to explain, with reference to the elementary procedure, the
nature of these proposed advances.

The initial, off-line computation of the mean orbital ele-
ment sets and their covariance arrays is performed exactly as
was described earlier. The baseline values for NL and Nf are
25 and 18. The launch boxes are usually 20 deg wide in longi-
tude and 10 deg high in latitude. The impact boxes are usually
10 deg wide in longitude and 10 deg high in latitude. The
observer was always stationed at the North Terrestrial Pole.

The test of the statistical initial orbit determination concept,
given the array of mean orbital element sets, commences with
the choice of a random place in the U.S.S.R. to be the launch
point and a random point in the U.S.A. to be the impact
point. These points are uniformly distributed across the two
country's areas as was done in the generation of the mean or-
bital element sets themselves. In fact, the same logical struc-
ture was used to guarantee a faithful sampling of all the NLNj
possibilities (and so the correct answer is known).

Once the Keplerian orbital element set is computed—
powered flight, atmospheric drag, the Sun and the Moon,
oblateness perturbations, and so on are all unessential compli-
cations with regard to the main purpose of this research and
are ignored—the missile is advanced from t = tL (tL = time of
launch) to t = tL + 300 s. The missile then had to be above the
polar observer's horizon for this orbit to be useful. If not,
then the clock was further advanced, in 150-s steps, the mis-
sile's location updated, the topocentric horizon-crossing com-
putation was repeated, and the visibility query was repeated.
If the answer was still negative, then additional 150-s incre-
ments were added to the clock (and the location of the missile
appropriately advanced) until t— T (r=time of last perigee
passage; i.e., the prelaunch perigee time a body on this orbit
would have had ignoring the physical reality of the Earth) ex-
ceeded half an orbital period. Orbital element sets leading to a
body being invisible even at apogee were rejected from further

consideration, and new launch and impact points were selected
as just described.

If visibility before apogee was achieved at some time t = tl,
then visibility was checked at time t = t2 = tl + At. (The time in-
terval between successive observations is A/.) Absent visibility
at time t2, this orbital element is discarded and a new launch
and impact point chosen. A variety of values of At from 10 to
300 s were used.

Given that the projectile was visible at both t = tl and t = t2,
the topocentric locations /?t and R2 were computed as well as
the topocentric direction cosine vectors ^ and 12 (R=Rt,
where R is the topocentric distance; £is a unit vector). For the
statistical initial orbit determination computations, the inde-
pendent angles comprising ^ and £2 were corrupted by addi-
tive, zero mean, Gaussian noise with a standard deviation of
20". For the competing two-location, two-time calculations,
the same was done but with a standard deviation of 100". In
addition, R{ and R2 were also rendered inexact in a similar
fashion with standard deviation equal to 10 m. Now a match
to the file of NLNf mean orbital element sets to the angles-
only observation at time t1 (namely ^) can be performed.

The mean orbital element sets have all been computed, once
and for all, at some arbitrary (but physical) time. January 1.0,
1989, was used for this research as the putative time of launch.
If one accepts this as real, then there is an obvious disadvan-
tage—the actual revolution that the missile is on is not unam-
biguously defined (again ignoring the physical presence of the
Earth). Once NaP>P/2, where P is the orbital period, ap is
the standard deviation of the period computed from the mean
orbital element set's covariance matrix and Kepler's First Law
(i.e., P2oca3), and Nis the number of revolutions elapsed since
the instant of time used as the uniform time of launch, the
uncertainty in calculating AT from the mean orbital element set
and ti is unacceptably large. Therefore, one must deduce a
new time of last perigee passage to make a mean orbital ele-
ment set fit the observations at tl and t2. Doing so is the first
step in the next stage of the simulation. § (A known or even ap-
proximate time of launch is not necessary for this calculation.)

Hence, for each of the NLNj possible mean orbital element
sets, one needs to try to find a physically meaningful time of
perigee passage that will match ̂  at t = ̂ . Physically meaning-
ful means that the time of last perigee passage Tis restricted to
the interval [-P/2, 0] since the (arbitrary) time of launch is
always defined to be tL =0. T is found by searching for the
best observation-matching true anomaly between VL (= the
true anomaly at launch) and TT (i.e., apogee). The value of VL
can be calculated because rL (= the radius of the Earth) is
known as is the mean orbital element set [i.e., rL = a(l-e2)/
(1+e cos VL) and vL^v/2], The best value of the true anom-
aly at time tl is searched for using a step size of (TT- vL)/2Q.
When the minimum difference between the predicted topocen-
tric vector of direction cosines and that actually seen by the
observer at tl is found, then this is declared to be the true
anomaly at tl for this mean orbital element set. Finally, the
time of last perigee passage is computed from the true anom-

§There is an alternative method of dealing with this temporal ambi-
guity. Let btL equal the difference between the actual time of launch
and that used to generate the mean orbital element sets. The observed
time of launch, which presumably comes from a launch detection
satellite, is in error by aL -1 min, so OL < <P (the orbital period). The
longitude of the ascending node needs to be altered from the value in
the mean orbital element set (say 0) to Q + wEdtL where co£ is the
Earth's sidereal rotation rate, 15.//0411/s. Similarly, the Q, Tsubma-
trix of the mean orbital element set's covariance matrix needs to be
updated too to account for the uncertainty in the observed time of
launch. We need to add (a>£(7L)2 to both <JQ and o£ while -uEo2

L is
added to the Q, T covariance term. However, the underlying assump-
tion in this technique is that the (heretofore neglected but definitely
nontrivial) correlation problem has been solved over the course of
time corresponding to tl-tL. If this could be done, then either one
should use our method of preliminary orbit determination2 or one has
enough observational data not to need the statistical initial orbit deter-
mination algorithm. Therefore, we have not pursued this path.
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aly form of Kepler's equation. Since many of the candidate
mean orbital element sets are totally nonsensical possibilities
for this observation, one cannot demand that ^ be matched,
only that its prediction be "close enough." If no value of the
true anomaly and the mean orbital element set under consider-
ation will provide a "close enough" match, then this mean or-
bital element set is rejected from further consideration.

When deciding how large "close enough" should be, the
reader must remember that 1) there are errors of observation
in £j, 2) it may be the incorrect launch or impact box, and 3)
these are mean orbital element sets. The larger the window
used for the mismatch, the larger will be the first subset of trial
orbital element sets. Making the matching criterion too tight
may deprive the search logic of the correct mean orbital ele-
ment set because of unusually large observational errors. Since
the principal consequence of too loose a window is merely
more computation, after looking at the values that do appear,
we chose 0.1 for the maximum mean square difference be-
tween the norm of ^ and its predicted value.

At t = t2 the time of last perigee passage calculation was
repeated, ab initio, but this time only for the subset of mean
orbital element sets that successfully passed through the t — tl
filter. For those surviving the identical filter at t2, the two
times of perigee passage associated with this mean orbital ele-
ment set need to be "close enough" to each other to declare
them to be identical. In this instance "close enough" means
within 2oT where OT is the standard deviation of the time of
perigee passage in the covariance matrix for this mean orbital
element set. Now there exists a much diminished in size subset
of the original NLNj possible mean orbital element sets that
have passed through three layers of filtering, they are subject
to one final filter, but first their values of T are refined by si-
multaneously using both sets of observational data to compute
T. Having completed this embellishment (instead of just using
the arithmetic mean of the two separately calculated values),
the mean orbital element set that can reproduce both ^ and £2
the best was sought for. This one was defined to be the optimal
mean orbital element set.

Having found the best mean orbital element set out of the
original NLNf competing ones, it can be used to compute the
location or velocity of the projectile, its covariance matrix
used to compute error estimates for these quantities in a
realistic fashion, and so on. Some obvious refinements to that
procedure will be considered after the computation of the
competing orbital element set is explained. Following the dis-
cussion of potential refinements, some numerical results of the
simple procedure just described are presented. Additional
Monte Carlo experiments that incorporate one of the refine-
ments are also given.

Computation of the Comparison Orbital Element Set
When the "observations" ^ and (2 were generated for our

passive, angles-only sensor, observations for the collocated
radar were also generated. The additional information con-
sisted of topocentric distances RI and R2 at times t = tl9 t2.
These pseudo-observations were separately and independently
corrupted with their own random errors as discussed before.
The information, along with the geocentric locations of the
observer at tl and t2, was saved. All of the data were then used
to compute an initial orbital element set by the two-location,
two-time procedure.1 Because At = t2-1{ is so short compared
to the orbital period P and because the angular part of radar
observational data is relatively imprecise, one cannot expect
that the orbit will be accurately resolved. If the scenario were
one wherein a stream of closely spaced observational data
were being acquired, so that the differential correction process
could swiftly right an inaccurate initial orbital element set,
then much better prediction performance at the future time
t = tF could be obtained. However, the latter scenario begs the
question of correlation and is, therefore, not realistic.

Refinements of the Statistical Initial Orbit
Determination Process

Several elements of a more sophisticated computation no
doubt occurred to readers as they read through the detailed ex-
planation of the algorithm. Indeed, originally we did merely
average the two independently determined times of perigee
passage rather than really compute the best one on ^ and £2
used together. Some additional enhancements to the basic sta-
tistical initial orbit determination process are described imme-
diately below. The most important of them have not been im-
plemented yet because of their cost and the surprising effective-
ness of the simplest procedure. These improvements should
contain another factor of 2-10 improvement in performance.

Both NL and Nr could be increased by large factors, thereby
diminishing the sizes of the launch and impact boxes. This
should sharpen the covariance matrices of the mean orbital ele-
ment sets and allow a finer distinction among the mean orbital
element sets. This refinement has been experimented with to the
extent of quadrupling both NL and Nf while simultaneously
quartering the area of the launch and impact boxes. A few
results of this experiment will be described in the next section.
There is a limit to how much can be gained from this diminish-
ment of the launch or impact boxes because eventually the
observational errors in ̂  and £2 will be large enough to mask the
difference between adjacent launch or impact boxes. Similarly,
the neglect of powered flight, atmospheric drag, and so on
would have to be remedied as the box area approaches zero.

Another embellishment also connected to the launch/im-
pact box combination concept is the use of nonequal weights.
At the moment all the NLNj possible launch/impact box com-
binations are assumed to be equally probable as real possibili-
ties for the missile's trajectory. Clearly this is unrealistic
within the Strategic Defense Initiative scenario. Hence, one
could envisage two different surface probability functions,
one for the launch locations and one for the impact locations.
Indeed, if the statistical initial orbit determination concept is
extended to the entire Earth, then these functions would be
defined at all terrestrial longitudes and latitudes. The product
of these two probabilities and the areas of the putative launch
and impact boxes would be used to weight the time of perigee
passage computation. In this way, the uniform mismatch cri-
terion of 0.1 could be adjusted for the war planner's beliefs
regarding launch locations and targets. This refinement would
greatly diminish the chance of unusually large observational
errors ruling out an a priori highly probable launch/impact
box combination. (An Iraq/U.S.A. or Libya/U.S.A. proba-
bility density would be especially discriminating.)

A different kind of improvement is the following: when the
first subset of mean orbital element sets is being delineated,
the associated covariance arrays are not actively used to gauge
the probability that this mean orbital element set really pro-
duced the observed topocentric vector of direction cosines.
Similarly, once the first subset is chosen, both the mean orbi-
tal element set and its associated covariance array could be up-
dated based on tl9 but this was not initially done. Were the lat-
ter done, then the comparison at t = t2 could be performed
with a refined mean orbital element set and with a refined
covariance matrix to use to gauge the probability that *?2 was
really produced by this mean orbital element set. Finally,
when a mean orbital element set did pass the t = t2 tests, the
mean orbital element set and its covariance array could again
be updated both to find the optimal mean orbital element set
and to predict the projectile's future trajectory. Results ob-
tained by differentially correcting the mean orbital element
sets will also be given.

The refinements discussed above are all independent so that
they may be implemented in any order. We expect that the
probability density enhancement will have the largest effect on
the results of the kinds of Monte Carlo simulations discussed
in the next section. However, it is also the most subjective of
the refinements mentioned, and so it is the last one that would
actually be introduced.
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Test Results
We first explored the comparative predictive capability of

both the SIOD method and the two-location, two-time
method. With NL=25, Nf= 18, Af = 300 s, and the standard
observational errors (i.e., 20" or 100" and 10 m), we pre-
dicted to the midpoint of the observing interval, 300 s beyond
the end of it, 600 s beyond the end of it, and then to the time
of impact. Initially, the SIOD technique is 3.9 times better
than the two-location, two-time procedure, then 2.9 times bet-
ter, 1.9 times better, and finally 0.7 times better (i.e., 30%
worse). By the last prediction time the absolute prediction
level has degraded to 4500 km from 570 km so this is of
dubious value in any case. These comparisons, those discussed
later, and those in Table 1 all refer to comparisons with the
underlying true orbital element set.

The same test done with the quadrupled values of NL and
Nf shows an additional 30% increase in the ratio of the
SIOD's algorithm performance to that of the two-location,
two-time algorithm. This is typical of the improvement that
the quartered launch/impact box area diminishment provides
for the shorter prediction times (i.e., bt = tF-t2 less than 300
s). Hence, we shall not dwell further on this aspect of the test-
ing. Note, though, that even these launch and impact boxes
are large enough to limit the ultimately obtainable precision of
the simplistic version of the method.

Table 1 shows a nonet of values for At = t2 - tl and predic-
tion intervals (60 past t2 typical of ballistic missile trajectory
problems. The SIOD method outperforms the radar technique
by at least a factor of two. (The A* = 20 s, dt= 100 s ratio is 2.9
for quadrupled NL and Nf and the absolute level has dropped
by 20%, whereas the Af = 10 s, 6/= 100 s ratio is 3.0 and the
absolute improvement is 30%. This is an expected trend.)
Finally, Monte Carlo simulations with 2 " angles-only pointing
show minimal improvement because the launch/impact boxes
are so large that the observational error is not the dominant
source of inaccuracy.

Because of the importance of the correlation issue in the
Strategic Defense Initiative scenario, a second set of trials was
independently conducted to try to understand the true utility
of the statistical initial orbit determination concept in the high
target density, poor observational angular resolution context
(especially if in the infrared). In particular, we realized that
the mean orbital element sets are best parameterized by the
time since last perigee passage measured at some nominal ref-
erence time TR. A convenient epoch for TR is the start of the
pseudo-observation generation at 300 s past the catalog launch
time TR( = January 1.0, 1991). Then, if one really has a launch
time of tL followed by an observation time robs, it is un-
necessary to try to fix the actual number of orbits between TR
and tL. All that is required is to add to the time since last peri-
gee passage the interval tobs — dR and to increment the longi-
tude of the ascending node by UE (tL — TR) mod (2ir) where UE
is the Earth's sidereal rotation rate. Knowledge of the actual
launch time is still unnecessary, and uncertainty in the launch
time is handled as described in the preceding footnote.

The basic pattern of launch and impact boxes was kept, but
the generation of the 250 launch box to impact box orbital ele-

ment sets used to create the mean orbital element sets that
made up the NL xNf master file was improved. In addition,
this time the polar observer was elevated 1000 km to increase
his visibility and to increase the statistical quality of the
results. The process of generating orbits, examining them at
300 s into the launch, using a 10 s spacing between observa-
tions and so on was all kept intact. Two other changes were
made. For this set of numerical experiments, the 50 best
matching mean orbital element sets were kept at time t — tl (us-
ing the angular miss-distance criterion). The second, and
much more important, alteration, was to implement the dif-
ferential correction idea discussed above. Thus, once the set of
50 best mean orbital element sets was delineated at t = tl, each
of them was differentially corrected using the observation at
tl, namely ̂ . Then, when this set was winnowed at t = t2 based
on £2» the discrimination was done against the updated mean
orbital element sets rather than the ones originally taken from
the master file. After the best matching updated orbital ele-
ment set (out of the 50 from t = tl) was found at t = t2, it was
again differentially corrected (using £2) for predictions into the
future (at t = tF).

To more simply judge the utility of the technique with
regard to the correlation issue per se, the miss distance in the
focal plane of the observer was computed at t = tF (in addition
to the three-dimensional miss distance). The underlying true
orbital element set was used for comparison; having seen the
failure of the radar two-location, two-time initial orbit deter-
mination method to successfully compete (on this type or orbi-
tal element set, on this time scale, and with this quality data),
additional comparisons with it were deemed to be superfluous.
Finally, these trials only used a bt = tF -12 = 10 s (also the value
of At = t2-tl) since this is a typical scan rate of a passive SDI
sensor.

The results of these trials can be simply summarized: the av-
erage angular miss distance in the observer's focal plane is
77 " =373 mrads. This is comparable in size to a couple of res-
olution elements of a believable infrared sensor. (An op-
timistic value for a resolution element is 20".) In any case, the
point is that this initial orbit determination process contains
within it the solution to the correlation problem. One must at-
tempt to correlate all above-threshold signals at t = tl with all
other above-threshold signals at t = t2. At t = t3 one need
merely attempt to correlate all above-threshold signals within
a circle (in the focal plane) of radius R (= 53 " because this was
the standard deviation about the mean of the angular miss dis-
tance) because anything further away cannot be on the same
ballistic trajectory. By t = t4, it is clear that this process will
almost converge and that the explosive exponential growth
that can occur during correlation will not happen. The mean
three-dimensional miss distance has been reduced to 123 km
(±85 km la).

Finally, there is one more significant point that should be
stressed with regard to the statistical initial orbit determina-
tion method. When trying to compute an angles-only orbital
element set by one of the classical initial orbit determination
schemes, one frequently discovers after the fact that the error
ellipsoid in three-dimensional space is extremely elongated

Table 1 Miss distance statistics
Observing interval

At = t2-tl(s)
10
10
10

20
20
20

30
30
30

Prediction time
dt = tF-t2(s)

100
200
300

100
200
300

100
200
300

SIOD, km
1140±700
1200 ±690
1280 ±730

990 ±620
1000 ±620
1050 ±630

880 ±570
1010±610
1040 ±620

Radar, km
2420 ±1520
2560 ±1780
2560 ±1830

2290 ± 540
2250 ± 550
2220 ± 560

2230 ± 510
2270 ± 580
2240 ± 590

Ratio
radar/SIOD

2.1
2.1
2.0

2.3
2.3
2.1

2.5
2.2
2.1
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along one axis (typically the line of sight). This is a conse-
quence of one's inability to correctly deduce the distance to
the object with only angular observations. This cannot happen
in the statistical initial orbit determination technique. The
reason is simple: the three-dimensional error ellipsoid is deter-
mined by the areas of the launch and impact boxes, not the an-
gular data, the errors in the angular data, or our inability to
cleverly use the angular data to infer the topocentric distance.
We can imagine that each mean orbital element set is a curve
in space surrounded by a torus-like uncertainty volume where
the volume of the toroid is independent of any observational
data. The uncertainty associated with the mean orbital ele-
ment set can never be larger than this no matter how poor the
observational data; the association of an observation with a
particular mean orbital element set can be incorrect, but the
uncertainty volume cannot increase. Once the best association
is made, then even if it is wrong, it is still the best one could
have done (in a statistical sense given the quality of the data).

With the improvements brought about by differentially cor-
recting the best matching orbital element set with the same
observational data used to select it, and the change in measure
of effectiveness to miss distance in the observer's focal plane,
we can see that this technique already has practical value.
Moreover, the three-dimensional miss distance is small enough
and, as discussed in the preceding paragraph, informative
enough that early midcourse cluster tracking or sensor-to-
sensor cluster handoff can be successfully accomplished (a
*'cluster" in the postboost phase is the bus, its associated war-
heads, and its associated decoys; immediately after the dis-
persing of the warheads and the decoys, the entire ensemble
still appears as one target because of the poor resolution of in-
frared sensors).

In summary, these test results do show that the statistical in-
itial orbit determination procedure shows great promise in

solving, by avoidance, the initial orbit determination problem
for ballistic missiles when the observational circumstances are
very demanding. Refinement of the basic algorithm, especially
with regard to the probability of launch or probability of im-
pact assignments, should produce much more favorable
results than those reported.
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